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Symmetrisation of molecular Dirac eigenfunctions 

S L Altmann and R Dirlf 
Department of Metallurgy and Science of Materials, University of Oxford, Parks Road, 
Oxford OX1 3PH, UK 

Received 7 July 1983 

Abstract. A systematic method for the symmetry adaptation of molecular Dirac spinors 
is presented that avoids the use of the double group of a point group G. Projective 
representations of G are instead used in a manner that fixes all phase factors unambiguously 
and automatically. Properties of the Euclidean group are exploited in order to simplify 
the work. 

1. Introduction 

It is well known (see e.g. Jansen and Boon 1967) that the symmetry group of the 
Dirac Hamiltonian for a molecule with point group symmetry G is the double groue 
d of this group. Various methods of symmetrisation with respect to this group G 
have been proposed (Onodera and Okasaki 1966, Oreg and Malli 1974, 1976a,b, 
1979, Toivonen and Pyykko 1977, Pyykko and Desclaux 1977, Hafner 1980). It has 
recently been pointed out, however, (Altmann 1979, Altman? and Palacio 1979, 
Altmann and Herzig 1982) that it is advantageous to replace G by the single group 
G, as long as projective, rather than ordinary (vector) representations are used. There 
are two advantages in this approach. First, the order of the group that is handled is 
halved, thus considerably reducing the amount of work necessary. In fact, once the 
correct tables are formed, the user handles the projective representations exactly as 
if they were ordinary ones. Secondly, and more importantly, major advantages of 
precision are gained since ambiguities in the multiplication rules of the double group 
are eliminated at the same time as all phase factors are fixed once for all in a consistent 
manner by means of closed formulae. This is an important point, of course, for the 
development of computer programs to carry out the symmetrisation. 

Although we refer here to molecular Dirac Hamiltonians, the procedure that we 
shall present in this paper can be used for cluster calculations in solids and it can easily 
be extended to space groups. 

G = 0 ( 3 ) ,  point group of elements g (proper or improper rotations). 
R E  S0(3) ,  proper rotation. 
Eg, Euler-Rodrigues parameters corresponding to  g. 
G ( g ) ,  vector representation of G. 
& ( g ) ,  projective representation of G for some stated factor system. 
3’(R), S’(R), irreducible vector and projective representations of SO( 3) in the ( 2 j +  
1) -dimensional Condon and Shortley basis, j integral and half-integral, respectively, 
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the latter in the Pauli gauge (Altmann and Herzig 1982). 
o(g)  is S1’2(R,). 
$g), three-dimensional orthogonal representation of G on the basis x, y ,  z ,  com- 
ponents of a vector r. 
<dl  . . . &I, 141.. . &), row and column vector of components 4 , .  . . 4,. (Bras and 
kets are given in light brackets.) 
[ S I ,  g ,] ,  phase (projective) factor for product g,,g,. (Commutators are given in light 
brackets.) 
g, Hilbert space operator corresponding to  g. All operators are given in sans serif and 
no notational distinction is made between Hilbert and configuration space operators 
since they can always be identified in this paper through their operands. 
l,, l,, unit matrix and operator, respectively of dimension n. 
a,  P ,  p, labels of irreducible vector bases; a representation, P column, p multiplicity. 
a, b, r, labels of irreducible projective bases; a representation, b column, r multiplicity. 

2. The projective representation method 

Given a group G, a set of matrices & ( g )  given for all gE G forms a projective 
representation if 

& M ( g , )  = [gl, g , I&(g ,g , ) ,  (2.1) 

where the brackets are phase factors (projective factors) that must be uniquely deter- 
mined by each pair g,, g,, If all the phase factors a;e unity then the representation is 
a vector representation (denoted with the symbol G ) .  In the-double group approach 
gig, is allowed to be an operation g i  in the double group G but not in G, whereas 
now it must always be an operation gk, say, belonging to G, the phase factor carrying 
the former distinction between gk and g ; .  

The basic feature of the method is a procedure to determine the phase factors 
uniquely. Call R(4, n) a rotation of SO(3) with angle of rotation ( -T  < 4 s T )  and 
axis of rotation n. The rotation must be parametrised by the Euler-Rodrigues 
(quaternion) parameters 

A =cos 44, A = sin &n, (2.2) 
which are written into the symbol {A, A}, such that two rotations multiply by the simple 
rule (Rodrigues 1840) 

{ A I , A ~ X A ~ , A ~ } = { A I  Az-Ai ‘A2 ,Ai  &+A2Ai+A1xA2} .  (2.3) 
This is the quaternion multiplication rule, the braces being Hamilton’s quaternions. 

The next step is to denote all rotations by poles on the unit sphere, from which 
the rotation is always seen as positive. Given a point group G the unit sphere is 
divided in two (not necessarily connected) hemispheres, one of which is chosen to be 
positive. All positive rotations are given poles on the positive hemisphere and all 
negative rotations poles on the negative hemisphere. Thus, the axis n is uniquely 
defined for each rotation. If g is an improper rotation, it is written as i R,, with i the 
inversion and R, E S0(3 ) ,  whence we can always assume that for each g E G, proper 
or improper, its Euler-Rodrigues parameters R, are uniquely determined. The rule 
that fixes the phase factors (Altmann 1979) is the following: when two rotations are 
multiplied by (2.31, if either the scalar on the right-hand quaternion is positive definite 
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or it is zero and the vector belongs to the positive hemisphere, then the phase factor 
is +l. Otherwise, it is -1. The inversion i entails some problems, since two phase 
factors are in use for the product i i ,  namely +1 in the Pauli gauge universally used 
for spinors, and -1 in the Cartan gauge which is used to build bases of the vector 
representations through Kronecker products of spinors (Altmann and Herzig 1982). 

Once a phase factor system is constructed, tables of irreducible projective rep- 
resentations and their corresponding Clebsch-Gordan coefficients can be given, as 
done in Altmann and Palacio (1979) and Altmann and Herzig (1982). Such tables 
guarantee correct subductions along group chains and they can be used exactly as 
tables of vector representations are used, without reference to the underlying phase 
factor system. It should be noticed that the usual choice of Pauli matrices entails a 
choice of phases that may or may not be compatible with the choice of phases that is 
implicit in the definition of a double group through the choice of multiplication rules. 
The projective representation method, on the other hand, fully guarantees this con- 
sistency, a point of vital importance in relativistic work where the Pauli matrices play 
a fundamental role. 

An essential feature of the procedure outlined above is that the parametrisation 
of SO(3) through Euler angles is replaced by the quaternion parametrisation. The 
reason for this is important. The topology of SO(3) is based on the fact that although 
R(4,  n) and R(-4, -n) are the same rotation, the poles of the identical binary rotations 
R(T, n), R(T,  -n) must be identifiable in order to classify correctly the classes of 
homotopy of the group, from which classification the phase factors arise. Whereas the 
Euler angles cannot recognise the distinction between these poles, their respective 
quaternion parameters are (0 ,  n} and {O, -n} and it is seen at once from the rule given 
before that distinct phase factors +1 and -1 respectively correspond to them. It is 
important to notice, moreover, that when the SU(2) and rotation matrices are expressed 
in terms of the quaternion parameters their phase factors are correctly given without 
further work, whereas this is not so when their more usual form in terms of Euler 
angles is employed. 

3. The Dirac Hamiltonian and its Hilbert space 

We review here the basic principles of the relativistic notation that we shall need. 
Although we follow as far as possible the notation of Messiah (1961) in order to 
facilitate comparison, we shall require a somewhat more compact notation. 

The Hilbert space 2, L2(R’)0C4,  is the carrier space for time-independent Dirac 
Hamiltonians that describe the motion of a charged partide. The unit four-spinors in 
this space are constructed as follows. Let us call 1;) and I$> the unit spjnors 110) and 
(01) (column vectors) that correspond to the Pauli spinors 14 $) and I$ 4) respectively. 
The four column vectors IA)Olp), for A and -p e-qual _to *$, are the unit four- 
spinors designated in dictionary order by 115 $)), 11; $)), Il$ $), 114 $)), where double angular 
brackets are used in order to differentiate four-spinors from two-spinors. A typical 
four-spinor of 2, Y(x1, will be written as 

where A and p here and henceforward range over *; in dictionary order. 
The Dirac Hamiltonian HD that describes the motion of a charged particle in a 
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scalar potential field p(x) has the form 

HD=icy,y p+mc*y,-ep(x)l,. 

The pi here are the usual linear momentum operators and the y j  are the operators 
that correspond to the matrices 

(3.3) 

The r, are the standard Pauli matrices. 
We assume that the function p(x) is invariant under a point group G and its 

corresponding magnetic (grey) point group, i.e. that the time reversal operator 8 
belongs to the group of H D .  The four-inversion operator I (parity) is defined in terms 
of the usual inversion i by 

I = iOy,. (3.4) 

= z * F ~ ( - x ) A F ( - l ) l ’ z - A l l A  p)). (3.5) 

It acts on the functions (3.1) as follows: 

The states of all atoms of the system will be described by atomic spinors. In order 
to consider their transformation properties we first consider all atomic spinors to be 
centred at the origin, but they will be shifted to the correct atomic sites at a later 
stage. The atomic spinors for half-integral J centred at the origin are of the form 
(Messiah 1961, p 927) 

q’E = R i / J l m w ( l m &  I J M )  Ylmllip)) * iR i+mF( / ’dp I  JW Yl,mlI$p))* (3.6) 

The integers I and I’ here are 
/ ‘ = J - L -  I = J + $ 3 ,  Z W  (3.7) 

where 6 is the eigenvalue of the four-inversion operator I defined in (3.5) and the 
brackets and the Ylm are the usual Clebsch-Gordan coefficients and spherical harmonics 
respectively. The functions R in (3.6) are the radial functions F and G of Messiah 
divided by the radius. They, as well as V, depend on an integral quantum number n 
that is left implicit. 

If, as in (3.1), we call A the first label of the four-spinors in (3.6) then 1 and I‘ in 
(3.7) are functions of A (and, of course, of J )  which, in order to emphasise their 
dependence on this label, will be written as 

=J+(-l)’/*-”& (3.8) 

3 ~ = z , , ( A m t p I ~ ~ ) ~ , - , I p ) .  (3.9) 

This allows us to write down the spin harmonics in (3.6) in the form 

Correspondingly, the atomic spinors (3.6) can be rewritten in a more compact notation 
as 

(3.10) 

where it must be remembered that the summation over A also entails h through (3.8). 
The effect of I on these functions can now be written from ( 3 . 9 ,  

(3.11) 

q . M G  J *  - - CA(*i)’/2-ARA3$lh), 

ppy: = ( - 1 ) J + G / 2 q M G  
I *  * 
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4. Projective representation of G and symmetrisation of the centred states 

We assume in this section that G has been embedded in SO(3) or 0 ( 3 ) ,  as the case 
might be, by the method described in 0 2 and that its irreducible projective and vector 
representations have been tabulated. The operator g, g E G acts on the atomic spinors 
(3.1) as follows (see Jansen and Boon 1967): 

(4.1) g v' ( x ) = A p @ (G( g ) - A p 6A p ' 1  I A ' )) ( g ) p ' p 9 

(4.2) 

(4.3) A = -1 = det d( g) ,  2 .  

It should be clear that' this operator entails a representation of G given by the Kronecker 
product of a vector representation on G with the projective representation o(g). This 
representation, therefore, is a projective representation of G with the correct factor 
system, since o(g)  has been so chosen. It follows that the atomic spinors (3.10), now 
to be written with argument 0 in order to emphasise that they are centred at the origin, 
span a projective representation e', 

g v ' 2  (0) = c . ~ , ~ ~ ~ ( o ) ~ ' ( g ) ~ ~ , ' ~ ,  (4.4) 

with 

Equation (4.6) results from writing g as the product of the rotation parametrised by 
R, times I and applying (3.11). It should also be noticed that the notation & is 
oversimplified, since this representation depends on 3 as well. e' is a reducible projective representation over G. We reduce it by means of a 
matrix wJ, 

w'+e'(g)wJ =XaOmJa&(g) ,  (4.7) 

where a ranges over all the irreducible projective representations of G for the chosen 
factor system. Therefore, the functions belonging to the b column of the a th  irreducible 
basis with multiplicity index r belong to the basis 

<T;'(o)l= (v'% (O)lW', (4.8) 

where a, r range as on the right-hand side of (4.7) and b ranges for each a. The 
irreducible basis on the left depends on &, J,  + and it should be remembered that M 
labels the functions of the basis on the right of (4.7) as well as the rows of WJ.  

5. Orbits 

Once the symmetrised centred states described in § 4 are formed, they can be translated 
to the various atomic sites within the molecule by means of a translation operator t 
that acts only on the space part of a Dirac spinor, 

tv'(x)=v'(x-t).  (5.1) 
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We must first note that in a molecular system there are, in general, sets of identical 
atoms that occupy equivalent sites, i.e. sites that are permuted amongst themselves 
under the operations of the molecular group G. Such a set of sites is called an orbit. 
In the molecule NH3, for example, the three hydrogen atoms occupy one such orbit. 
An orbit O(t , )  is the set of all sites that are generated from to under all .the group 
operations, 

o ( t , , = { t I t = G ( h ) t n ) .  (5.2) 

Some operations of G, in general, leave to invariant and the set formed by such 
operations is a group called the little group of to, G,, 

G, = {g I $g)r ,  = to} G G. (5.3) 

It should be noticed that the little groups of different sites of the same orbit are not 
identical in general but isomorphic. Once the little group is defined, it is convenient 
to express G as an expansion in left cosets of G,, 

G = 1, gG,. (5.4) 

The set of coset representatives {g} is neither unique nor closed in general. We assume 
henceforth, however, that it has been chosen once for all, to emphasise which fact the 
coset representatives are denoted with bold type. 

It is clear from (5.2) and (5.3) that each orbit site is uniquely generated by a coset 
representative g on forming &g)t0. It is thus appropriate to label these sites in terms 
of the corresponding g by means of the symbol 

$g) r,, = t;. (5.5) 

to" = gtog-'. (5.6) 

(5.7) 

We shall now prove that the operator corresponding to ( 5 . 5 ) ,  tg, is given by 

The proof is as follows. Because 

tr = r + r, 
it follows from (5.5) that 

tRr=r+G(g)t,. (5.8) 
The operator on the right of (5.6), on the other hand, is 

(5.9) 

(5.10) 

and on comparing (5.10) with (5.8) the result follows. The following relation is an 
important consequence of (5 .6 ) ,  

(5.11) gt;' = gg'to(g')-' = gg'to(g')-lg-lg = tgg'g. 

6. Shifted states and their transformation properties 

The centred atomic spinors VE'(0) which span the basis on the left of (4.8) can now 
be systematically shifted to each of the sites of an orbit by acting on them with the 
shifting operators t;, for each of the coset representatives g in (5.4). Because each 
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orbit site can uniquely be labelled by each g ,  the shifted atomic spinors will be denoted 
with the symbol qgi: 

q;;=tp;'(o) = q ; ' ( - t ; ) .  (6.1) 

In order to find the symmetry behaviour of these functions, we must obtain the action 
of the operator g on them, for all g E  G, 

(6.2) 

= tEg'xb'q;r(o) ea (g )b 'b  (6.3) 

= xb'q;; ,gg '&"(g)b 'b .  (6.4) 

Here we have used (5.11) in (6.2) and (6.3) follows from the definition of the centred 
spinors in (4.7). It is,convenient to rewrite (6.4) as follows, 

gv:;. = gtg'v;'(o) = t;"'gq;'(o) 

gqg;.  = xgS,8 ( g " ,  gg ' )xb 'q;;g ' ,&:" ( g )  b'b,  (6.5) 

W', g g ' )  = 1 if (g")-'gg' E G,, (6.6) 

= O  otherwise. (6.7) 

where 

Notice that, for a given pair g ,  g ' ,  the element g" is uniquely determined, since the 
szt {g} is fixed. Equations (6.6) and (6.7) thus determine a permutation representation 
P for each orbit O(t,J, 

mgy = W', g g ' ) .  (6.8) 

gq;i' = x g p z b , q ; r g , s & a (  g)b'$(g)g' ,g'  (6.9) 

On substituting (6.8) into (6.5), we have 

= x;g',b'q;rg"{ e a ( g ) o P ( g ) } b ' g ' , , b g ' ,  (6.10) 

This means that the set of all shifted functions of an orbit transforms under the 
projective representation e " ( g )  0 & g ) ,  which satisfies precisely the stated factor 
system for G :  

(6.1 1) 

= [ g , g ' I ~ " ( g g ' ) O P ( g g ' ) .  (6.12) 

The basis spanned by all the shifted functions of an orbit is in general reducible: 

{ e " ( g )  0 @(g)}{  & " ( g ' )  (E P ( g ' ) }  = G " ( g )  Ga ( g ' )  0 fi(  g ) k ( g ' )  

g<q;;1= < ~ ; ; I I & " ( g ) o + ( g ) } .  (6.13) 

Our task is therefore to reduce the direct product on the right of (6.13), which we 
shall do in two steps, of which the first will be the reduction of P. Because this is a 
vector representation, it must reduce into the irreducible vector representations G a  
of G, 

(6.14) 
In the last step here we rewrite the previous expression in a notation that wiL1 be useful 
later on, p being a multiplicity index su:h that for a fixed a and variable p, CUP defines 
precisely the same representation as G". 

The representation (6.13) will thus be reduced by the matrix l,OB, where the 
dimension of 1, equals that of G". Since an irreducible vector basis is labelled by 9;p 

B + f i ( g ) B  =I;,@ m Q G Q ( g )  = C,O G m p ( g ) .  
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( a  representation, p column, p multiplicity index), we define the reduced basis resulting 
from (6.13) as shown on the left-hand side of the following equation, 

( 9 ; ;PP I  = ( 9 ;;I1 0 B. (6.15) 

(It must be remembered that, like the functions 9;' in (4.8), this basis also depends 
on 4 J, i.) In fact, on introducing (6.15) into (6.13), we have 

g<9;;plla 0 B+ = ( 9; ;p l ( la  0 B+){ ea (8) 0 &)}, (6.16) 

and it follows from (6.16) that 

(6.17) 

(6.18) 

the summation over p in (6.14) now being implicit through the use of the row vector 
and matrix notation. 

The basis <9;rpI is not yet fully reduced, because ea 0 Cnp on the right-hand 
side of (6.18) will not in general be irreducible. Thus our second step in the reduction 
process must be the reduction of this representation over the projective representations 
of G. Let us denote the irreducible projective representations that appear in this 
reduction with the labels A, B, R for representation, column and multiplicity respec- 
tively. Since the multiplicity indices of the basis in (6.18) do not affect its reduction, 
we shall denote a single function of this basis with the ket 

(6.19) 

whereas the irreducible basis obtained by coupling &a with G m  will be denoted with 
the ket IaaABR). (This notation, of course, is used in order to parallel the usual 
notation for angular momentum coupling.) The final irreducible basis is thus made 
up of functions of the form 

9 a r - p  = 
bp laabp), 

laaABR) = Zlaabp)(aabp I aaABR).  (6.20) 

The brackets on the right-hand side of this equation are Clebsch-Gordan coefficients 
that are available from tables. 

7. Time reversal 

The time reversal operator 8 
e.g. Jansen and Boon 1967), 

is defined as follows for time-independent states (see 

(7.1) 
- 0 2  

where l L  is the unit operator in L2 (W3) and K is the complex conjugation operator. 
It is well known that 

[g, 01 = 0 ,  v g g  G, (7.2) 

e2 = - i L .  (7.3) 

and that 
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Given the abstract group G, the group G o  (magnetic group) including time reversal 
0 is given by 

G o  = G + 8G = G 0 ( E  + e), (7.4) 

where 8 is the abstract element represented by the antiunitary operator 8 in (7.1). In 
order to adopt the very convenient direct product form shown, it is sufficient to take 

e* = E, [e, e] = -1. (7.5) 

The operators gem represent the elements gem of G o  ( m  = 1 ,2 )  and are uni- 

The action of 8 on the spinors (3.1) is given, after some simple manipulation, by 
tary/antiunitary operators that define a projective corepresentation. 

the relation 

eU( x) = iXAw+( -x )  T w (  - 1 ) I lh  -cLh (7.6) 

U;?;. (7.7) 

from which their effect on the atomic spinors (3.10) can be seen to be 

eq\ I rM;  ,* = (-1jM+1(-1)I/*+J/Z 

(Notice the exchange of the * index.) 
Once the states have been symmetrised with respect to G as discussed in 9 4, they 

must be symmetry adapted with respect to the unitary projective corepresentations of 
Go.  For this purpose, the classification of the unitary representations in the well known 
types I, I1 and I11 (see e.g. Jansen and Boon 1967) is still valid for the projective 
representations (Did 1981) and for types I1 and I11 the functions eUZ'(0) must be 
linearly independent of the basis <Ug'(O)l, in which case a further unitary transforma- 
tion can be performed (Dirl 1981). Type I1 representations, however, are exceptional 
for point groups. In type I nothing is added by time reversal whereas in type I1 or 
type I11 a straight doubling of the degeneracy arises (Jansen and Boon 1967). In 
practice no further work is necessary owing to this doubling. 

8. Example for C,, group 

We shall consider an example of the method discussed above for a molecule C,, 
symmetry, a group which has been treated from the point of view of the projective 
representations by Altmann and Herzig (1982). We give in table 1 the quaternion 
parameters that correspond to the setting and positive hemisphere used by these 
authors and in table 2 the matrices for the generators in all vector and projective 
representations. 

There is only one non-trivial physically significant orbit in this case, generated by 
a vector to on the (T,~ ( y  z )  plane, the little group of which is C, = E + uV1. We choose 

Table 1. Quaternion parameters. A =cos 46, .1 =sin idn, n = ( nx, ny' nz), 

uvl = iC,, uV2 = iCi2 uv3 = iC;, Operation E c; c; 
A 
A 

1 1 1 I I 0 0 -  - 0 
(0 0 0 )  (0  0 u52) (0  0 -\/3/2 ( 1  0 0 )  (0 f v'3/2) (0 & 452) 
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Table 2. Representations. w = exp(2m/6)  

for it the following coset decomposition: 

C,, = EC,+ C;Cs+ CTC,. 

The coset representatives here label the rows and columns of the permutation matrix 
which, from (6.6) and (6.8), is given by the condition 

P(g) , , , , ,  = 1 if (g")-'gg' E C,, (8.2) 

being zero otherwise. This representation, again listed by generators only, is as follows: 

g: c: u v  I 

p ig ) : [  1 'I[ 1 1 .  (8 .3)  

This representation decomposes into A I O E  and the matrix B that reduces it as in 
(6.14) is given by 

1 1  1 B=z[; ;*I, w = exp( 2 Ti/ 6), 6 = -w.  (8.4) 
1 

We are now ready to symmetrise the centred states q J":; (0) that span the representa- 
tion d!' as in (4.4). We take for our example J = 2 and consider the functions 

Y %+l(O 1 1 2 > M 3 - 3  2 -  2. ( 8 . 5 )  
Since the representation GJ depends on G we shall label the corresponding representa- 
tions with the symbol e'*. From (4.5) and (4.6), 

&3'2*(g) = s3'2(R,), g proper, (8.6) 

= *$3'2(R,), g improper, (8.7) 
?here the R, are the quaternion parameters for g as listed in table 1. The matrices 
SJ or 9' for j integral and half-integral respectively are given in terms of the quaternion 
parameters R, equal to {A, A} by the expression 

S'{A, A}m = { ( j +  m') !  ( j -  m')! ( j +  m ) !  ( j -  n ~ ) ! } ' ' ~  

( A  +in,)'-" - k  ( A  - iAz)J+m-k(-Al  -iA,)" - m t k  ( -A,  +in,)  
( j - m ' - k ) ! ( j + m - k ) ! ( m ' - m +  k ) !  k !  X Z k ( - - l )  9 

(8.8) 
where the embellishment on S must be chosen in accordance to j .  With (8.8) in (8.6) 
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and (8.7) we obtain the following matrices 

P 2 * ( C :  ) G3’2* ( a\, ) 

-1 
w* 

1 ‘  w 
-1 

(8.9) 

which reduce as follows, 

G3/2==1E 3 rOEi/z@’E3/,. + (8.10) 

The subduction matrices W’ in (4.8) are readily obtained. Since they depend on (3 
they will be denoted with W‘: 

U 3 

3 

I 1  - _  

I 1  - _  
;+ 2 2  - 2 

;+ 2 2  2 

$ I +1/J? 1/42 1 
b 

M 

(8.11) 

In using this matrix to write the symmetrised centred states on the left of (4.8), attention 
must be paid to the precise order in which the irreducible projective matrices appear 
along the diagonal, which is in our case that stated in (8.10). The rows of W’, as 
follows from (4.8), correspond to each of the functions YJ”=’ in (8.5) in the stated 
order of M. We shall consider henceforth the case 3 = +1, so that functions of this 
basis can conveniently be abbreviated with the ket ( J M ) ,  the + sign (as well as & value) 
being implicit. The reduced basis on the left of (4.8) is labelled by U (projective 
representation) and b (column) and these labels are shown at the top of (8.11) and 
correspond to the specific reduction form stated. Notice that the labels of the rep- 
resentations are the short symbols in table 2. As is now usual in this field (cf e.g. 
Pyykko and Toivonen 1983) these labels are chosen to coincide with the j of the lowest 
spherical harmonic that belongs to the representation and, when appropriate, we also 
use the sequence j to - j  to label the columns. For consistency of the notation, for 
one-dimensional representations the column label is given as a repeat of the representa- 
tion label. Since the multiplicity index in (4.8) can be dispensed with in our case, a 
symmetrised centred state will be written as V:;:: but it must be remembered that 
these must be understood as representation and not as j labels. The centred sym- 
metrised spinors follow at once from (8.11) and (4.8). They are for the case 3 = +l 
in hand, 

*;;:: = ( l / J Z , I 3 ~ ) + ( 1 / J Z ) I s ~ ) ,  (8.12) 

v;;:=I$f), (8.13) 

9% 1 / 2  = -13 2 2  L) 7 (8.14) 

(8.15) 
The shifted states are obtained, as on the right-hand side of (6.15), by considering 

the centred states Vt in (8.12) to (8.15) and adding to them the g label, this being 

q 3 / 2 -  3 / 2 -  - - ( l / J ~ ) ~ ~ s ) - ( l / ~ ) ~ ~ ~ ) .  
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one of the three coset representatives E, Cl,  C ;  in (8.1). For simplicity, the latter 
will be denoted as E, +, - respectively. The reducible basis on the right-hand side of 
(6.15) will thus contain 12 states. Since the multiplicity indices r and p in (6.15) can 
be dispensed with, a function of the reduced bases on its left will be denoted as follows, 

(8.16) 

Again, the vector representation symbols cy @ will be identified with the short symbols 
of table 2, the columns of the representation 1 being labelled 1 and I respectively. 
The partly symmetrised shifted states (8.16) are given, on introducing B from (8.4) 
into (6.15), by 

(8.17) 

(8.18) 

(8.19) 

Here the indices a, b range over the four pairs listed at the top of (8.11) and the states 
on the right-hand side are obtained from (8.12) to (8.15). 

The fully symmetrised shifted spinors are the states on the left of (6.20). The 
symbols here must be first written in full in order to extract the Clebsch-Gordan 
coefficients from the tables of Altmann and Herzig (1982) whose notation we follow 
precisely. The symmetrised states IanABR) can be shortened to ( A B )  since there is 
no multiplicity here and, once the coupling is performed, the relevant piece of informa- 
tion is the irreducible projective representation A and the column B to which the 
symmetrised spinor belongs. The symmetrised states are the following twelve, of which 
the first eight are four degenerate pairs corresponding to the representation each 
pair given in a single line. The next two states belong to 'E , , ,  and the last two to 'E,,,,. 

y o "  bp - - lacub@)* 

1 a l o b  l o )  = ( 1 /J3) (V'EE + VI g +  + v g - ) ,  
la 1 b l )  = (l/J3)(VI& - U**;+ - wVI;-), 

1 a 1 b I-) = ( 1/J5)(9 g E  -  VI :+ - w *V g - ) .  

(8.20) 

(8.21) 

(8.22) 

(8.23) 

(8.24) 

(8.25) 

(8.26) 

(8.27) 

The twelve states listed on the right-hand sides here are those given in (8.17)-(8.19). 

9. Discussion 

When double group representations are constructed in the usual Euler parametrisation, 
the procedure adopted is roughly as follows. SU(2) matrices are chosen for G and 
their neggtives for the remaining operations of 6.. This establishes the multiplication 
rules of G. Once this is done, bases for the other representations are chosen and their 
matrices constructed from the SO(3) matrices in terms of the Euler angles. The 
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matrices resulting do not automatically satisfy the multiplication rules and phases have 
to be skilfully chosen so as to achieve this. Excellent tables for a large number of 
point groups have recently been produced in this or a similar way by Pyykko and 
Toivonen (1983). The procedure we have given and the representation formulae in 
quaternion parameters ensure complete consistency of phase factors and multiplication 
rules and it is thus eminently suited for automatic computation. A program has now 
been written that produces the irreducible representations and Clebsch-Gordan 
coefficients for all point groups (P Herzig, private communication). 

Even when consistent tables of representations are used, two problems remain. 
The first is that the representations chosen must also be consistent with the standard 
form of the Pauli matrices, having to satisfy the relation (see Jansen and Boon 1967. 

(9.1) 

Even otherwise good tables, like those of Bradley and Cracknell (1972), fail sometimes 
to satisfy this relation, which is automatically satisfied by our method. We have checked 
extensively the tables of Pyykko and Toivonen (1983) in this respect and have found 
no inconsistencies. 

The second problem is the following. In order to symmetrise the centred spinor 
states the matrices &'(g) defined in (4.5) and (4.6) must be constructed. Again, if 
Euler angles are used, skilful adaptation to the multiplication rules is required, whereas 
this is not so when these equations are used together with the quaternion parametrisa- 
tion in (8.8). Pyykko and Toivonen (1983) include expressions for these matrices for 
the dihedral groups that are admirably correct, but anyone dealing with the cubic and 
icosahedral groups would find it very hard to proceed in +his way. It should finally be 
mentioned that attention must be paid to the Clebsch-Gordan coefficients used to 
ensure phase consistency. 

As regards the symmetrisation procedure itself, it must be pointed out that owing 
to the large size of the matrices required in practice, the two-step method presented 
here reduces considerably the amount of work required by existing methods. 

p 318) 

o( g ) g,  0 ( g 1 = 2 k(+k g( Rg ) k,. 
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